Older Version Newer Version

onuralver onuralver Oct 8, 2017

=Cryptography with Liberty BASIC : 103 RSA Algorithm= 
Onur Alver (//CryptoMan//)
[[toc|flat]]
----
=**RSA ALGORITHM**= 


There is an excellent description about RSA here . <span style="color: #e0155e;">https://www.di-mgt.com.au/rsa_alg.html</span>

==Step by Step RSA Description== 

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">RSA Algorithm depends of the difficulty of factoring very large composite numbers.</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Remember, **composite number n is a product of two or more prime numbers**. For example</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">for example **4,6,8,9,10,12,15.... are composite numbers**. While **2,3,5,7,11,13... are**</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">**prime numbers**. Prime numbers are the root numbers of all other numbers in the universe.</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">2 is only even prime number and all other prime numbers have to be odd. Prime numbers</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">are only divisible by themselves without leaving any remainder.</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">The difficulty is finding all of the prime numbers and there are infinite number of</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">prime numbers. Especially, if you are trying to find huge prime numbers of hundred</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">or more digits.</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">When you select 15, it is easy to guess 3 and 5 as the prime factors of 15. In a strong</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">RSA implementation we will choose much bigger prime numbers p and q such that n = p.q</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">such as the following huge composite number below:</span>

[[code]]
n =
11929413484016950905552721133125564964460656966152763801206748195494305685115033
38063159570377156202973050001186287708466899691128922122454571180605749959895170
80042105263427376322274266393116193517839570773505632231596681121927337473973220
312512599061231322250945506260066557538238517575390621262940383913963
[[code]]

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Can you guess what is **p** and **q** from this **n**?</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Not so easy, this is the idea.</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Now, we have to generate two large prime numbers p and q to determine </span>

**<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">n = p.q called common modulus n.</span>**

**<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">t = (p-1).(q-1) called Euler-Totient number t.</span>**

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Start by chosing an **e** such as **3** an easy to use small prime, and **d** related to **e**</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">such that following formulas to calculate **c** **enciphered data** from **a** **clear data** and </span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">recover the clear data **a** from **c** by using exponent **d**.</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">You can find d iteratively from the equality e.d ≡ 1 mod t which can be rephrased</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">as follows "Which d multiplied by e divided by t have a remainder of 1?"</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">We will call (e,n) our Public Key and (d,n) the secret key or private key.</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Alice can publish or send her Public Key (e,n) to Bob to send her his private</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">messages by email and Evil Corp's intelligence officer Eve reading every mail</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">from Evil Corp's POP3/SNMP traffic should not be able to make any sense from</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">the garbled text. </span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Bob will encipher the his message with the following encryption formula:</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">c = a </span><span style="background-color: #fffff0; font-size: 12px; vertical-align: super;">e</span><span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> mod n</span>



<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">Finally, Alice will decipher the encrypted message c using the following</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">decryption formula:</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">a = c </span><span style="background-color: #fffff0; font-size: 12px; vertical-align: super;">d</span><span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> mod n</span>

==Simple RSA Example with Small Primes== 


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> Let's choose two small primes **p=3** and **q=11**</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> Therefore, n = p . q = 3 x 11 = 33, the common modulus **n=33**.</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> Next, let's find the Euler-Totient number **t**=(p-1)(q-1)=(3-1)(11-1)=**20**.</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> We now choose the smallest possible odd prime number 3 as e and therefore</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> **Alice's public key is (3,33**) and Alice sends this to Bob with WhatsApp as</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> a different channel where both Alice and Bob trusts.</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> Alice than sets out the find d from **e.d = 1 mod t** equality and asks the</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> question which d multiplied by 3 and divided by 20 gives a remainder of 1?</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> This is not very hard to find, **3 x 7** **= 21** and 21 divided by 20 gives a</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> remainder of 1. </span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> Therefore, **Alice's secret key is ( 7, 33 )** and she keeps this private</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> only to be used by Alice to decipher secret message coming to her with</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> her Public Key ( 3,33 )</span>



<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> Alice sends Bob a suggested coding table as follows with WhatsApp.</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> A B C D E F G H I J K L M N O P Q R S T U V W X Y Z . , ? ! _ ( )</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> Bob sends the following message to Alice:</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> **SZZNYSZYANYDAXC,Y. MYNZXSCEALYNWIYIEYI.NYECEZYANYEIIE**</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> Eve intercepts SZZNYSZYANYDAXC,Y. MYNZXSCEALYNWIYIEYI.NYECEZYANYEIIE but she can not</span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> make any sense out of this garbled text because she does not have the secret key.</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> Alice converts this message according to above coding table: </span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> 19 26 26 14 25 19 26 25 01 14 25 04 01 24 03 28 25 27 31 13 25 14 26 24 19 03 05 01 12 25 14 23 09 25 09 05 25 09 27 14 25 05 03 05 26 25 01 14 25 05 09 09 05</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> Finally Alice deciphers each number with her secret key (7,33) using the formula :</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> **<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">a = c </span><span style="background-color: #fffff0; font-size: 12px; vertical-align: super;">7</span><span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> mod 33</span>**</span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> like </span>
<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> **<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;">a = 19 </span><span style="background-color: #fffff0; font-size: 12px; vertical-align: super;">7</span>**<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> **mod 33 = 893871739 mod 33 = 13** which corresponds to letter **M**</span></span>

<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> When we calculate all the numbers in the above message we will get:</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> 13 05 05 20 31 13 05 31 01 20 31 16 01 18 09 19 31 03 04 07 31 20 05 18 13 09 14 01 12 31 20 23 15 31 15 14 31 15 03 20 31 14 09 14 05 31 01 20 31 14 15 15 14</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> When we look at our coding table we obtain the following text message:</span>


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> **M E E T _M E_ AT_ P A R I S_ C D G_ T E R M I N A L_ T W O_ O N_ O C T_ N I N E_ A T_ N O O N**</span>

==CONCLUSION== 

Obviously when you use small primes and obtain a modulus of 33 we are doing a 6 bit RSA encryption which is effectively a simple substition cipher which
goes back in history to the Ceaser's age, so simple substition ciphers are called Ceaser's Ciphers and these are easily breakable with Frequency Analysis.
All of those super XOR 'unbreakable' ciphers are substitution ciphers and obviously they are very easily breakable.

Therefore, we have to have a key size of 2048 bits and above as of 2017 for a secure RSA encryption implementation. We only gave the small primes 
example to make the idea easily illustrated. You can even test this with an EXCEL worksheet. The aritmetic is the same regardless of the size of prime
numbers. Formula is the same and even with high school mathematics knowledge you can understand RSA.

However, you can try much larger prime numbers with the following Liberty Basic example for about up to 128 bits modulus sizes for reasonable computational
times with Liberty Basic. If you want to use keys sizes such as 1024 or 2048 bits, you must call an external DLL such as OpenSSL.

On the other hand, even 128 bit RSA with Liberty Basic is pretty good for casual encryption purposes. Liberty Basic has an undocumented feature for
making huge integer arithmetic which is not possible with other programming languages. It was possible to make this RSA demonstration with Liberty Basic
due to this unusual capability.

Remember, with RSA the block of data you are encrypting must be the same size with the modulus bit size, For example for a modulus size of 128 bits,
the block size must be 128 bits or 16 bytes. If the data you are encrypting is less than the modulus size, you must pad your data block with a random
number after a delimiter to make it equal to modulus size. 2048 bits will be 256 bytes data blocks. Please, note that you can do 2048 bits RSA encryption
with exponent 3 using Liberty Basic but it will be too slow to decrypt 2048 bits blocks with native Liberty Basic.

One of the challenges of the RSA algorithm is the TRUST CHAIN. How will you trust somebody on Internet who sends his Public Key to you and invite
you to use this to send him/her encrypted messages such as trusting a web site who ask you to send your credit card number using an allegedly secure
public key?

This is the reason for the need for CA Certificate Authorities. CAs act like Notaries by signing Public Keys of individuals and companies so that we
can trust those public keys. These are called Public Key Certificates which are effectively Encrypted Public Keys which are enciphered with the
Secret Root Key of the CA. So, instead of Plain Public Key of an individual or company we request a Certificate signed by a trusted CA which can be
company wide internal CA or globally accepted CA like VeriSign, Comodo, Thawte, etc. Assuming that we have the Public Keys of the trusted CA
we can decrypt CA CERTIFICATE using the CA PUBLIC KEY and we can recover the PUBLIC KEY of the party we are going to send a secret
message. Arithmetic is the same. However, for this tutorial there is no need to make it more complicated with CA CERTIFICATES. Once the basics
are understood, it is not hard to make this extension.



==Demonstration Program in Liberty Basic== 
[[code format="lb"]]
dim stats(11)
dim SmallPrimes(1000)

[begin]
    print "Liberty Basic RSA Demonstration"
    print "Loading Small Primes"
    for i=1 to 1000
        read x
        SmallPrimes(i)=x
    next
    NoOfSmallPrimes=1000
    print NoOfSmallPrimes;" Primes Loaded"
    print"Generating Random Primes"

    for i=1 to 2
        t1=time$("ms")

        [TryAnother]
        print
        print "Prime No ";i
        if i=1 then x=Random(30) else x=Random(30)
        iterations=0

        [Loop]
        iterations=iterations+1
        if MillerRabin(x,7)=1 then
            'print "Composite"
            x=x+2
            goto [Loop]
        else
            t2=time$("ms")
            print x;" Probably Prime. Generated in ";t2-t1;" milliseconds"
        end if
        if p then q=x else p=x
    next i
    print
    print "p=";dechex$(p)

[Retry]
    restore
    print "q=";dechex$(q)

    'Common modulus N=(p)(q)
    n=p*q
    print "Key Length ";len(dechex$(n))*4;" bits "
    print

    'Euler Totient Number M=(p-1)(q-1)
    m=(p-1)*(q-1)

    'Choose a suitable prime E relatively prime to M
    for i=1 to 12
        read e
        if (GCD(e,m)=1) then goto [Start]
    next i

[Start]
    print "Common Modulus, n=";dechex$(n)
    print "Euler-Totient No, m=";dechex$(m)
    print "Public Exponent, e=";dechex$(e)
    d=ExtBinEuclid( e, m )
    print "Secret Exponent, d=";dechex$(d)


    DIM TEST(10)
    DIM ENCR(10)
    DIM DECR(10)
    TEST(1)=TEXT2DEC("LIBERTY BASIC IS THE BEST")
    TEST(2)=TEXT2DEC("WHICH BASIC CAN DO THIS ")
    TEST(3)=TEXT2DEC("WITHOUT CALLING EXT DLL ?")
    TEST(4)=TEXT2DEC("LB CAN DO BIG INTEGERS ! ")
    TEST(5)=TEXT2DEC("UNDOCUMENTED LB FEATURE. ")
    print
    print "RSA ENCRYPTION DEMO"
    for i=1 to 5
        t1=time$("ms")
        ENCR(i)=FastExp(TEST(i), e, n)
        t2=time$("ms")
        print TEST(i);
        print " ";ENCR(i);
        print " ";t2-t1;" ms"
        print DEC2TEXT$( TEST(i) );" --> ";DEC2TEXT$( ENCR(i) )
        print
    next i
    print
    print ""
    print
    print "RSA DECRYPTION DEMO"
    for i=1 to 5
        t1=time$("ms")
        DECR(i)=FastExp(ENCR(i), d, n)
        t2=time$("ms")
        print ENCR(i);
        print " ";DECR(i);
        print " ";t2-t1;" ms"
        print DEC2TEXT$( ENCR(i) );" --> ";DEC2TEXT$( DECR(i) )
        print
    next i
    print " "
    print
    print "RSA Demo Finished."

[stop]
END

Function GCD( m,n )
    ' Find greatest common divisor with Extend Euclidian Algorithm
    ' Knuth Vol 1 P.13 Algorithm E
    ap =1 :b =1 :a =0 :bp =0: c =m :d =n
    [StepE2]
    q = int(c/d) :r = c-q*d
    if r<>0 then
        c=d :d=r :t=ap :ap=a :a=t-q*a :t=bp :bp=b :b=t-q*b
        'print ap;" ";b;" ";a;" ";bp;" ";c;" ";d;" ";t;" ";q
        goto [StepE2]
    end if
    GCD=a*m+b*n
    'print ap;" ";b;" ";a;" ";bp;" ";c;" ";d;" ";t;" ";q

End Function 'Extended Euclidian GCD

Function ExtBinEuclid( u, v )
    k=0 :t1=0 :t2=0 :t3=0
    if u<v then
        temp=u
        u=v
        v=temp
    end if
    while (IsEven( u ) and IsEven( v ))
        k = k+1
        u = int(u/2)
        v = int(v/2)
    wend
    u1 = 1: u2 = 0: u3 =u: t1 =v: t2 =u-1: t3 =v

    [Loop1]
    'two labels with no code!

    [Loop2]
    ' print "*"
    if (IsEven(u3)) then
        if IsOdd(u1) or IsOdd(u2) then
            u1=u1+v
            u2=u2+u
        end if
        u1=int(u1/2)
        u2=int(u2/2)
        u3=int(u3/2)
    end if
    if IsEven(t3) or (u3<t3) then
        temp=u1: u1=t1: t1=temp
        temp=u2: u2=t2: t2=temp
        temp=u3: u3=t3: t3=temp
    end if
    if IsEven(u3) then
        goto [Loop2]
    end if

    while u1<t1 OR u2<t2
        u1=u1+v: u2=u2+u
    wend
    u1=u1-t1: u2=u2-t2: u3=u3-t3
    if (t3>0) then
        goto [Loop1]
    end if

    while u1>=v AND u2>=u
        u1=ul-v: u2=u2-u
    wend
    ExtBinEuclid=u-u2
End Function

function IsEven( x )
    if ( x MOD 2 )=0 then
        IsEven=1
    else
        IsEven=0
    end if
end function

function IsOdd( x )
    if ( x MOD 2 )=0 then
        IsOdd=0
    else
        IsOdd=1
    end if
end function


Function FastExp(x, y, N)
    if (y=1) then 'MOD(x,N)
        FastExp=x-int(x/N)*N
        goto [ExitFunction]
    end if
    if ( y and 1) = 0 then
        dum1=y/2
        dum2=y-int(y/2)*2 'MOD(y,2)
        temp=FastExp(x,dum1,N)
        z=temp*temp
        FastExp=z-int(z/N)*N 'MOD(temp*temp,N)
        goto [ExitFunction]
    else
        dum1=y-1
        dum1=dum1/2
        temp=FastExp(x,dum1,N)
        dum2=temp*temp
        temp=dum2-int(dum2/N)*N 'MOD(dum2,N)
        z=temp*x
        FastExp=z-int(z/N)*N 'MOD(temp*x,N)
        goto [ExitFunction]
    end if

    [ExitFunction]
end function

Function PowMod( a, n, m)
    r = 1
    while (n > 0)
        if (n AND 1) then '/* test lowest bit */
            r = MulMod(r, a, m) '/* multiply (mod m) */
        end if
        a = MulMod(a, a, m) '/* square */
        n = int(n/2) '/* divided by 2 */
    wend
    PowMod=r
End Function

Function MulMod( a, b, m)
    if (m = 0) then
        MulMod=a * b ' /* (mod 0) */
    Else
        r = 0
        while (a > 0)
            if (a AND 1) then ' /* test lowest bit */
                r= r+b
                if (r > m) then
                    r = (r MOD m) ' /* add (mod m) */
                end if
            end if
            a = int(a/2) ' /* divided by 2 */
            b = b*2
            if (b > m) then
                b = (b MOD m) ' /* times 2 (mod m) */
            end if
        wend
        MulMod=r
    End If
End Function


Function rand( x )
    x=x*5
    x=x+1
    rand=x
End Function

Function MillerRabin(n,b)
    'print "Miller Rabin"
    't1=time$("ms")
    if IsEven(n) then
        MillerRabin=1
        goto [ExtFn]
    end if
    i=0

    [Loop]
    i=i+1
    if i>1000 then goto [Continue]
    if ( n MOD SmallPrimes(i) )=0 then
        MillerRabin=1
        goto [ExtFn]
    end if
    goto [Loop]

    [Continue]
    if GCD(n,b)>1 then
        MillerRabin=1
        goto [ExtFn]
    end if
    q=n-1
    t=0
    while (int(q) AND 1 )=0
        t=t+1
        q=int(q/2)
    wend
    r=FastExp(b, q, n)
    if ( r <> 1 ) then
        e=0
        while ( e < (t-1) )
            if ( r <> (n-1) ) then
                r=FastExp(r, r, n)
            else
                Exit While
            end if
            e=e+1
        wend
        [ExitLoop]
    end if
    if ( (r=1) OR (r=(n-1)) ) then
        MillerRabin=0
    else
        MillerRabin=1
    end if

[ExtFn]
End Function


Function Random( Digits )
' x=INT(RND(1)*TIME$("ms")*9912812828239112219) * INT(RND(1)*9912166437771297131373) *
' INT(RND(1)*71777126181142123) * INT(RND(1)*7119119672435637981) *
' INT(RND(1)*991216643912127789) * INT(RND(1)*79126181142123) *
' INT(RND(1)*711911128376332417) * INT(RND(1)*991216643123129) *
' INT(RND(1)*79126181142123) * INT(RND(1)*6661912727312317)
' Random=INT(VAL(RIGHT$(STR$(x,1)))

    x=INT(RND(1)*TIME$("ms")*9912812828239112219) * INT(RND(1)*9912166437771297131373) *_
    INT(RND(1)*71777126181142123) * INT(RND(1)*7119119672435637981) *_
    INT(RND(1)*991216643912127789) * INT(RND(1)*79126181142123) *_
    INT(RND(1)*711911128376332417)
    x=x*x+x+41
    y$=mid$(str$(x),INT(rnd(1)*30+1),Digits )
    ldg=val(right$(y$,1))
    z=0
    if ldg=0 then z=1
    if ldg=2 then z=1
    if ldg=4 then z=1
    if ldg=6 then z=1
    if ldg=8 then z=1
    Random=val(y$)+z
End Function

FUNCTION TEXT2DEC( x$ )
    a$=UPPER$(x$)
    y$=""
    FOR i=1 TO LEN(a$)
        y$=y$+STR$(ASC(MID$(a$,i,1)))
    NEXT
    TEXT2DEC=VAL(y$)
END FUNCTION


FUNCTION DEC2TEXT$( n )
    a$=STR$(n)
    y$=""
    FOR i=1 TO LEN(a$)-1 STEP 2
        m=VAL(MID$(a$,i,2))
        if m>30 and m<99 then y$=y$+CHR$(m) else y$=y$+"."
    NEXT
    DEC2TEXT$=y$
END FUNCTION

data 2, 3, 5, 7, 11, 13, 17, 19, 23, 29
data 31, 37, 41, 43, 47, 53, 59, 61, 67, 71
data 73, 79, 83, 89, 97, 101, 103, 107, 109, 113
data 127, 131, 137, 139, 149, 151, 157, 163, 167, 173
data 179, 181, 191, 193, 197, 199, 211, 223, 227, 229
data 233, 239, 241, 251, 257, 263, 269, 271, 277, 281
data 283, 293, 307, 311, 313, 317, 331, 337, 347, 349
data 353, 359, 367, 373, 379, 383, 389, 397, 401, 409
data 419, 421, 431, 433, 439, 443, 449, 457, 461, 463
data 467, 479, 487, 491, 499, 503, 509, 521, 523, 541
data 547, 557, 563, 569, 571, 577, 587, 593, 599, 601
data 607, 613, 617, 619, 631, 641, 643, 647, 653, 659
data 661, 673, 677, 683, 691, 701, 709, 719, 727, 733
data 739, 743, 751, 757, 761, 769, 773, 787, 797, 809
data 811, 821, 823, 827, 829, 839, 853, 857, 859, 863
data 877, 881, 883, 887, 907, 911, 919, 929, 937, 941
data 947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013
data 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069
data 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151
data 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223
data 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291
data 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373
data 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451
data 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511
data 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583
data 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657
data 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733
data 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811
data 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889
data 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987
data 1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053
data 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129
data 2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213
data 2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287
data 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357
data 2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423
data 2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531
data 2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617
data 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687
data 2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741
data 2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819
data 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903
data 2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999
data 3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079
data 3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181
data 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257
data 3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331
data 3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413
data 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511
data 3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571
data 3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643
data 3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727
data 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821
data 3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907
data 3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989
data 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057
data 4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139
data 4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231
data 4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297
data 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409
data 4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493
data 4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583
data 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657
data 4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751
data 4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831
data 4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937
data 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003
data 5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087
data 5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179
data 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279
data 5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387
data 5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443
data 5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521
data 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639
data 5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693
data 5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791
data 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857
data 5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939
data 5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053
data 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133
data 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221
data 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301
data 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367
data 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473
data 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571
data 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673
data 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761
data 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833
data 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917
data 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997
data 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103
data 7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207
data 7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297
data 7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411
data 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499
data 7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561
data 7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643
data 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723
data 7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829
data 7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919



[[code]]


<span style="background-color: #fffff0; font-family: 'Courier New',Courier,'Nimbus Mono L',monospace; font-size: 16px;"> [[toc|flat]]
</span>