Cryptography with Liberty BASIC : 103 RSA Algorithm
Onur Alver (CryptoMan) Cryptography with Liberty BASIC : 103 RSA AlgorithmRSA ALGORITHM
RSA Algorithm is based on the assumption on the difficulty of factoring large composite numbers.
Demonstration Program
dim stats(11)dim SmallPrimes(1000)[begin]print"Liberty Basic RSA Demonstration"print"Loading Small Primes"for i=1to1000read x
SmallPrimes(i)=x
next
NoOfSmallPrimes=1000print NoOfSmallPrimes;" Primes Loaded"print"Generating Random Primes"for i=1to2
t1=time$("ms")[TryAnother]printprint"Prime No ";i
if i=1then x=Random(30)else x=Random(30)
iterations=0[Loop]
iterations=iterations+1if MillerRabin(x,7)=1then'print "Composite"
x=x+2goto[Loop]else
t2=time$("ms")print x;" Probably Prime. Generated in ";t2-t1;" milliseconds"endifif p then q=x else p=x
next i
printprint"p=";dechex$(p)[Retry]restoreprint"q=";dechex$(q)'Common modulus N=(p)(q)
n=p*q
print"Key Length ";len(dechex$(n))*4;" bits "print'Euler Totient Number M=(p-1)(q-1)
m=(p-1)*(q-1)'Choose a suitable prime E relatively prime to Mfor i=1to12read e
if(GCD(e,m)=1)thengoto[Start]next i
[Start]print"Common Modulus, n=";dechex$(n)print"Euler-Totient No, m=";dechex$(m)print"Public Exponent, e=";dechex$(e)
d=ExtBinEuclid( e, m )print"Secret Exponent, d=";dechex$(d)DIM TEST(10)DIM ENCR(10)DIM DECR(10)
TEST(1)=TEXT2DEC("LIBERTY BASIC IS THE BEST")
TEST(2)=TEXT2DEC("WHICH BASIC CAN DO THIS ")
TEST(3)=TEXT2DEC("WITHOUT CALLING EXT DLL ?")
TEST(4)=TEXT2DEC("LB CAN DO BIG INTEGERS ! ")
TEST(5)=TEXT2DEC("UNDOCUMENTED LB FEATURE. ")printprint"RSA ENCRYPTION DEMO"for i=1to5
t1=time$("ms")
ENCR(i)=FastExp(TEST(i), e, n)
t2=time$("ms")print TEST(i);
print" ";ENCR(i);
print" ";t2-t1;" ms"print DEC2TEXT$( TEST(i));" --> ";DEC2TEXT$( ENCR(i))printnext i
printprint""printprint"RSA DECRYPTION DEMO"for i=1to5
t1=time$("ms")
DECR(i)=FastExp(ENCR(i), d, n)
t2=time$("ms")print ENCR(i);
print" ";DECR(i);
print" ";t2-t1;" ms"print DEC2TEXT$( ENCR(i));" --> ";DEC2TEXT$( DECR(i))printnext i
print" "printprint"RSA Demo Finished."[stop]ENDFunction GCD( m,n )' Find greatest common divisor with Extend Euclidian Algorithm' Knuth Vol 1 P.13 Algorithm E
ap =1:b =1:a =0:bp =0: c =m :d =n
[StepE2]
q =int(c/d):r = c-q*d
if r<>0then
c=d :d=r :t=ap :ap=a :a=t-q*a :t=bp :bp=b :b=t-q*b
'print ap;" ";b;" ";a;" ";bp;" ";c;" ";d;" ";t;" ";qgoto[StepE2]endif
GCD=a*m+b*n
'print ap;" ";b;" ";a;" ";bp;" ";c;" ";d;" ";t;" ";qEndFunction'Extended Euclidian GCDFunction ExtBinEuclid( u, v )
k=0:t1=0:t2=0:t3=0if u<v then
temp=u
u=v
v=temp
endifwhile(IsEven( u )and IsEven( v ))
k = k+1
u =int(u/2)
v =int(v/2)wend
u1 =1: u2 =0: u3 =u: t1 =v: t2 =u-1: t3 =v
[Loop1]'two labels with no code![Loop2]' print "*"if(IsEven(u3))thenif IsOdd(u1)or IsOdd(u2)then
u1=u1+v
u2=u2+u
endif
u1=int(u1/2)
u2=int(u2/2)
u3=int(u3/2)endifif IsEven(t3)or(u3<t3)then
temp=u1: u1=t1: t1=temp
temp=u2: u2=t2: t2=temp
temp=u3: u3=t3: t3=temp
endifif IsEven(u3)thengoto[Loop2]endifwhile u1<t1 OR u2<t2
u1=u1+v: u2=u2+u
wend
u1=u1-t1: u2=u2-t2: u3=u3-t3
if(t3>0)thengoto[Loop1]endifwhile u1>=v AND u2>=u
u1=ul-v: u2=u2-u
wend
ExtBinEuclid=u-u2
EndFunctionfunction IsEven( x )if( x MOD2)=0then
IsEven=1else
IsEven=0endifendfunctionfunction IsOdd( x )if( x MOD2)=0then
IsOdd=0else
IsOdd=1endifendfunctionFunction FastExp(x, y, N)if(y=1)then'MOD(x,N)
FastExp=x-int(x/N)*N
goto[ExitFunction]endifif( y and1)=0then
dum1=y/2
dum2=y-int(y/2)*2'MOD(y,2)
temp=FastExp(x,dum1,N)
z=temp*temp
FastExp=z-int(z/N)*N 'MOD(temp*temp,N)goto[ExitFunction]else
dum1=y-1
dum1=dum1/2
temp=FastExp(x,dum1,N)
dum2=temp*temp
temp=dum2-int(dum2/N)*N 'MOD(dum2,N)
z=temp*x
FastExp=z-int(z/N)*N 'MOD(temp*x,N)goto[ExitFunction]endif[ExitFunction]endfunctionFunction PowMod( a, n, m)
r =1while(n >0)if(n AND1)then'/* test lowest bit */
r = MulMod(r, a, m)'/* multiply (mod m) */endif
a = MulMod(a, a, m)'/* square */
n =int(n/2)'/* divided by 2 */wend
PowMod=r
EndFunctionFunction MulMod( a, b, m)if(m =0)then
MulMod=a * b ' /* (mod 0) */Else
r =0while(a >0)if(a AND1)then' /* test lowest bit */
r= r+b
if(r > m)then
r =(r MOD m)' /* add (mod m) */endifendif
a =int(a/2)' /* divided by 2 */
b = b*2if(b > m)then
b =(b MOD m)' /* times 2 (mod m) */endifwend
MulMod=r
EndIfEndFunctionFunction rand( x )
x=x*5
x=x+1
rand=x
EndFunctionFunction MillerRabin(n,b)'print "Miller Rabin"'t1=time$("ms")if IsEven(n)then
MillerRabin=1goto[ExtFn]endif
i=0[Loop]
i=i+1if i>1000thengoto[Continue]if( n MOD SmallPrimes(i))=0then
MillerRabin=1goto[ExtFn]endifgoto[Loop][Continue]if GCD(n,b)>1then
MillerRabin=1goto[ExtFn]endif
q=n-1
t=0while(int(q)AND1)=0
t=t+1
q=int(q/2)wend
r=FastExp(b, q, n)if( r <>1)then
e=0while( e <(t-1))if( r <>(n-1))then
r=FastExp(r, r, n)elseExitWhileendif
e=e+1wend[ExitLoop]endifif((r=1)OR(r=(n-1)))then
MillerRabin=0else
MillerRabin=1endif[ExtFn]EndFunctionFunctionRandom( Digits )' x=INT(RND(1)*TIME$("ms")*9912812828239112219) * INT(RND(1)*9912166437771297131373) *' INT(RND(1)*71777126181142123) * INT(RND(1)*7119119672435637981) *' INT(RND(1)*991216643912127789) * INT(RND(1)*79126181142123) *' INT(RND(1)*711911128376332417) * INT(RND(1)*991216643123129) *' INT(RND(1)*79126181142123) * INT(RND(1)*6661912727312317)' Random=INT(VAL(RIGHT$(STR$(x,1)))
x=INT(RND(1)*TIME$("ms")*9912812828239112219)*INT(RND(1)*9912166437771297131373)*_
INT(RND(1)*71777126181142123)*INT(RND(1)*7119119672435637981)*_
INT(RND(1)*991216643912127789)*INT(RND(1)*79126181142123)*_
INT(RND(1)*711911128376332417)
x=x*x+x+41
y$=mid$(str$(x),INT(rnd(1)*30+1),Digits )
ldg=val(right$(y$,1))
z=0if ldg=0then z=1if ldg=2then z=1if ldg=4then z=1if ldg=6then z=1if ldg=8then z=1Random=val(y$)+z
EndFunctionFUNCTION TEXT2DEC( x$ )
a$=UPPER$(x$)
y$=""FOR i=1TOLEN(a$)
y$=y$+STR$(ASC(MID$(a$,i,1)))NEXT
TEXT2DEC=VAL(y$)ENDFUNCTIONFUNCTION DEC2TEXT$( n )
a$=STR$(n)
y$=""FOR i=1TOLEN(a$)-1 STEP 2
m=VAL(MID$(a$,i,2))if m>30and m<99then y$=y$+CHR$(m)else y$=y$+"."NEXT
DEC2TEXT$=y$
ENDFUNCTIONdata2,3,5,7,11,13,17,19,23,29data31,37,41,43,47,53,59,61,67,71data73,79,83,89,97,101,103,107,109,113data127,131,137,139,149,151,157,163,167,173data179,181,191,193,197,199,211,223,227,229data233,239,241,251,257,263,269,271,277,281data283,293,307,311,313,317,331,337,347,349data353,359,367,373,379,383,389,397,401,409data419,421,431,433,439,443,449,457,461,463data467,479,487,491,499,503,509,521,523,541data547,557,563,569,571,577,587,593,599,601data607,613,617,619,631,641,643,647,653,659data661,673,677,683,691,701,709,719,727,733data739,743,751,757,761,769,773,787,797,809data811,821,823,827,829,839,853,857,859,863data877,881,883,887,907,911,919,929,937,941data947,953,967,971,977,983,991,997,1009,1013data1019,1021,1031,1033,1039,1049,1051,1061,1063,1069data1087,1091,1093,1097,1103,1109,1117,1123,1129,1151data1153,1163,1171,1181,1187,1193,1201,1213,1217,1223data1229,1231,1237,1249,1259,1277,1279,1283,1289,1291data1297,1301,1303,1307,1319,1321,1327,1361,1367,1373data1381,1399,1409,1423,1427,1429,1433,1439,1447,1451data1453,1459,1471,1481,1483,1487,1489,1493,1499,1511data1523,1531,1543,1549,1553,1559,1567,1571,1579,1583data1597,1601,1607,1609,1613,1619,1621,1627,1637,1657data1663,1667,1669,1693,1697,1699,1709,1721,1723,1733data1741,1747,1753,1759,1777,1783,1787,1789,1801,1811data1823,1831,1847,1861,1867,1871,1873,1877,1879,1889data1901,1907,1913,1931,1933,1949,1951,1973,1979,1987data1993,1997,1999,2003,2011,2017,2027,2029,2039,2053data2063,2069,2081,2083,2087,2089,2099,2111,2113,2129data2131,2137,2141,2143,2153,2161,2179,2203,2207,2213data2221,2237,2239,2243,2251,2267,2269,2273,2281,2287data2293,2297,2309,2311,2333,2339,2341,2347,2351,2357data2371,2377,2381,2383,2389,2393,2399,2411,2417,2423data2437,2441,2447,2459,2467,2473,2477,2503,2521,2531data2539,2543,2549,2551,2557,2579,2591,2593,2609,2617data2621,2633,2647,2657,2659,2663,2671,2677,2683,2687data2689,2693,2699,2707,2711,2713,2719,2729,2731,2741data2749,2753,2767,2777,2789,2791,2797,2801,2803,2819data2833,2837,2843,2851,2857,2861,2879,2887,2897,2903data2909,2917,2927,2939,2953,2957,2963,2969,2971,2999data3001,3011,3019,3023,3037,3041,3049,3061,3067,3079data3083,3089,3109,3119,3121,3137,3163,3167,3169,3181data3187,3191,3203,3209,3217,3221,3229,3251,3253,3257data3259,3271,3299,3301,3307,3313,3319,3323,3329,3331data3343,3347,3359,3361,3371,3373,3389,3391,3407,3413data3433,3449,3457,3461,3463,3467,3469,3491,3499,3511data3517,3527,3529,3533,3539,3541,3547,3557,3559,3571data3581,3583,3593,3607,3613,3617,3623,3631,3637,3643data3659,3671,3673,3677,3691,3697,3701,3709,3719,3727data3733,3739,3761,3767,3769,3779,3793,3797,3803,3821data3823,3833,3847,3851,3853,3863,3877,3881,3889,3907data3911,3917,3919,3923,3929,3931,3943,3947,3967,3989data4001,4003,4007,4013,4019,4021,4027,4049,4051,4057data4073,4079,4091,4093,4099,4111,4127,4129,4133,4139data4153,4157,4159,4177,4201,4211,4217,4219,4229,4231data4241,4243,4253,4259,4261,4271,4273,4283,4289,4297data4327,4337,4339,4349,4357,4363,4373,4391,4397,4409data4421,4423,4441,4447,4451,4457,4463,4481,4483,4493data4507,4513,4517,4519,4523,4547,4549,4561,4567,4583data4591,4597,4603,4621,4637,4639,4643,4649,4651,4657data4663,4673,4679,4691,4703,4721,4723,4729,4733,4751data4759,4783,4787,4789,4793,4799,4801,4813,4817,4831data4861,4871,4877,4889,4903,4909,4919,4931,4933,4937data4943,4951,4957,4967,4969,4973,4987,4993,4999,5003data5009,5011,5021,5023,5039,5051,5059,5077,5081,5087data5099,5101,5107,5113,5119,5147,5153,5167,5171,5179data5189,5197,5209,5227,5231,5233,5237,5261,5273,5279data5281,5297,5303,5309,5323,5333,5347,5351,5381,5387data5393,5399,5407,5413,5417,5419,5431,5437,5441,5443data5449,5471,5477,5479,5483,5501,5503,5507,5519,5521data5527,5531,5557,5563,5569,5573,5581,5591,5623,5639data5641,5647,5651,5653,5657,5659,5669,5683,5689,5693data5701,5711,5717,5737,5741,5743,5749,5779,5783,5791data5801,5807,5813,5821,5827,5839,5843,5849,5851,5857data5861,5867,5869,5879,5881,5897,5903,5923,5927,5939data5953,5981,5987,6007,6011,6029,6037,6043,6047,6053data6067,6073,6079,6089,6091,6101,6113,6121,6131,6133data6143,6151,6163,6173,6197,6199,6203,6211,6217,6221data6229,6247,6257,6263,6269,6271,6277,6287,6299,6301data6311,6317,6323,6329,6337,6343,6353,6359,6361,6367data6373,6379,6389,6397,6421,6427,6449,6451,6469,6473data6481,6491,6521,6529,6547,6551,6553,6563,6569,6571data6577,6581,6599,6607,6619,6637,6653,6659,6661,6673data6679,6689,6691,6701,6703,6709,6719,6733,6737,6761data6763,6779,6781,6791,6793,6803,6823,6827,6829,6833data6841,6857,6863,6869,6871,6883,6899,6907,6911,6917data6947,6949,6959,6961,6967,6971,6977,6983,6991,6997data7001,7013,7019,7027,7039,7043,7057,7069,7079,7103data7109,7121,7127,7129,7151,7159,7177,7187,7193,7207data7211,7213,7219,7229,7237,7243,7247,7253,7283,7297data7307,7309,7321,7331,7333,7349,7351,7369,7393,7411data7417,7433,7451,7457,7459,7477,7481,7487,7489,7499data7507,7517,7523,7529,7537,7541,7547,7549,7559,7561data7573,7577,7583,7589,7591,7603,7607,7621,7639,7643data7649,7669,7673,7681,7687,7691,7699,7703,7717,7723data7727,7741,7753,7757,7759,7789,7793,7817,7823,7829data7841,7853,7867,7873,7877,7879,7883,7901,7907,7919
Cryptography with Liberty BASIC : 103 RSA Algorithm
Onur Alver (CryptoMan)Cryptography with Liberty BASIC : 103 RSA Algorithm
RSA ALGORITHM
RSA Algorithm is based on the assumption on the difficulty of factoring large composite numbers.
Demonstration Program
Cryptography with Liberty BASIC : 103 RSA Algorithm